
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CONDITIONALS & FUNCTIONS

HELLO!
2

1. Pull changes from the svodnik/JS-SF-10-resources repo to
your computer:
‣ Open the terminal
‣ cd to the Documents/JSD/JS-SF-10-resources directory

‣ Type git pull and press return
2. In your code editor, open the following folder:  

Documents/JSD/JS-SF-10-resources/03—conditionals-
functions

WELCOME AURIELLE!
CONDITIONALS & FUNCTIONS

JAVASCRIPT DEVELOPMENT

CONDITIONALS &
FUNCTIONS

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES
5

At the end of this class, you will be able to
‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS

AGENDA
6

‣ Comparison operators
‣ Logical operators
‣ Conditional statements
‣ Functions

WEEKLY OVERVIEW
CONDITIONALS & FUNCTIONS

WEEK 3

WEEK 4

(holiday) / Scope & Objects

Slackbot Lab / JSON & DOM

WEEK 2 Data Types & Loops / Conditionals & Functions

CONDITIONALS & FUNCTIONS 8

EXIT TICKET QUESTIONS
1. I am a little confused about the functions within the iterating things.

Like the straight-up for loop makes a lot of sense to me, but the other
ones (forEach etc), I am confused when I need to use "return" and
exactly what they are doing.

2. let vs var, I know we might get to this but are both these things able to
be used by browsers? Do certain types of loops/functions warrant a var
vs a let?

3. Can arrays be type-sensitive with the data types they contain? In
today's example, we had instances of arrays containing both string and
number elements. Can you declare an empty array to be of a specific
type (i.e: string only) so that there is an error if one were to append a
number to it?

4. What exercises can I do to ensure my confidence with forLoops?

CONDITIONALS & FUNCTIONS 9

How to you decide what to have for dinner?

‣ What factors do you consider?
‣ How do you decide between them?

CONDITIONALS
CONDITIONALS & FUNCTIONS 10

CONDITIONALS & FUNCTIONS 11

CONDITIONAL STATEMENTS
‣ Decide which blocks of code to execute and which to skip, based on the

results of tests that we run
‣ Known as control flow statements, because they let the program

make decisions about which statement should be executed next, rather
than just going in order

if STATEMENT
CONDITIONALS & FUNCTIONS 12

if (expression) { code } if (expression) { 
 code 
}

‣JavaScript doesn’t care about white space, so these are equivalent.
‣However, putting block contents on a separate line is best practice
for code readability.

CONDITIONALS & FUNCTIONS 13

BOOLEAN VALUES
‣ A separate data type
‣ Only valid values are true or false
‣ Named after George Boole, a mathematician

true false

CONDITIONALS & FUNCTIONS 14

COMPARISON OPERATORS
> greater than

>= greater than or equal to

< less than

<= less than or equal to

=== strict equal (use this one)

== coercive equal (AVOID)

!== strict not equal (use this one)

!= coercive not equal (AVOID)

CONDITIONALS & FUNCTIONS 15

TYPE COERCION

‣ JavaScript “feature” that attempts to make it possible to run a
comparison operation on two objects of different data types

‣ Results are sometimes unpredictable
‣ == and != use coercion if necessary to arrive at an answer — avoid

them
‣ === and !== do not use coercion — best practice is to use these rather

than the coercive operators

CONDITIONALS & FUNCTIONS 16

if STATEMENT

let weather = "sunny";

if (weather === "sunny") {
 console.log("Grab your sunglasses");
}

CONDITIONALS & FUNCTIONS 17

if/else STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 18

else if STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else if (weather === "rainy") {
 console.log("Take an umbrella");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 19

TERNARY OPERATOR

‣ A compact if/else statement on a single line
‣ “ternary” means that it takes 3 operands

CONDITIONALS & FUNCTIONS 20

TERNARY OPERATOR

(expression) ? trueCode : falseCode;

CONDITIONALS & FUNCTIONS 21

TERNARY OPERATOR

let name = (expression) ? trueCode : falseCode;

‣ Can produce one of two values, which can be assigned to a variable in
the same statement

CONDITIONALS & FUNCTIONS 22

BLOCK STATEMENTS
‣ Statements to be executed after a control flow operation are grouped

into a block statement
‣ A block statement is placed inside braces

{
 console.log("Grab your sunglasses.");
 console.log("Enjoy the beach!");
}

CONDITIONALS & FUNCTIONS 23

LOGICAL OPERATORS
‣ Operators that let you chain conditional expressions

&& AND Returns true when both left and right values are true

|| OR Returns true when at least one of the left or right values is true

! NOT Takes a single value and returns the opposite Boolean value

CONDITIONALS & FUNCTIONS 24

TRUTHY AND FALSY VALUES

CONDITIONALS & FUNCTIONS 25

FALSY VALUES
‣ All of these values become false when converted to a Boolean:

false
0
“”
NaN
null
undefined

‣ These are known as falsy values because they are equivalent to false

CONDITIONALS & FUNCTIONS 26

TRUTHY VALUES
‣ All values other than false, 0, "", NaN, null, and undefined become
true when converted to a Boolean

‣ All values besides these six are known as truthy values because they
are equivalent to true

‣ ‘0’ and ‘false’ are both truthy! (Why?)

CONDITIONALS & FUNCTIONS 27

BEST PRACTICES
‣ Convert to an actual Boolean value

‣ Adding ! before a value returns the inverse of the value as a
Boolean

‣ Adding !! before a value gives you the original value as a Boolean
‣ Check a value rather than a comparison

instead of  
if (name === false)

just use  
if (name)

15 min 1. Write a program that outputs results based on users’ age.
Use the list of conditions in the app.js file.

2. BONUS 1: Rewrite your code to allow a user to enter an
age value, rather than hard-coding it into your program.
(Hint: Read up on the window.prompt method.)

3. BONUS 3: Rewrite your code to use a switch statement
rather than if and else statements.

EXERCISE TIMING

LAB — CONDITIONALS

‣ Pair
TYPE OF EXERCISE

‣ starter-code > 1-ages-lab
LOCATION

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

FUNCTIONS
CONDITIONALS & FUNCTIONS 29

CONDITIONALS & FUNCTIONS

Allow us to group a
series of statements

together to perform a
specific task

GROUP STEPS

We can use the same
function multiple times

REUSABLE

Not always executed
when a page loads.

Provide us with a way to
'store' the steps needed to

achieve a task.

STORE STEPS

FUNCTIONS

CONDITIONALS & FUNCTIONS 31

DRY =
DON’T
REPEAT
YOURSELF

CONDITIONALS & FUNCTIONS 32

FUNCTION DECLARATION SYNTAX

function name(parameters) {
 // do something
}

CONDITIONALS & FUNCTIONS 33

FUNCTION DECLARATION EXAMPLE

function speak() {
 console.log(“Hello!”);
}

CONDITIONALS & FUNCTIONS 34

FUNCTION EXPRESSION SYNTAX

let name = function(parameters) {
 // do something
};

CONDITIONALS & FUNCTIONS 35

FUNCTION EXPRESSION EXAMPLE

let speak = function() {
 console.log(“Hello!”);
};

CONDITIONALS & FUNCTIONS 36

ARROW FUNCTION SYNTAX

let name = (parameters) => {
 // do something
};

CONDITIONALS & FUNCTIONS 37

ARROW FUNCTION EXAMPLE

let speak = () => {
 console.log(“Hello!”);
};

CONDITIONALS & FUNCTIONS

pickADescriptiveName();

Function name + parentheses

function pickADescriptiveName() {
 // do something
}

To run the function, we need to call it. We can do so like this:

CALLING A FUNCTION

EXERCISE

EXERCISE — WRITING FUNCTIONS

‣ Practice defining and executing functions
KEY OBJECTIVE

‣ Individual/paired
TYPE OF EXERCISE

4 min 1. Follow the instructions under Part 1
EXECUTION

‣ starter-code > 3-functions-exercise (part 1)
LOCATION

CONDITIONALS & FUNCTIONS 40

FUNCTION EXPRESSION VS FUNCTION DECLARATION
‣ Function expressions define functions that can be used anywhere in

the scope where they're defined.
‣ You can call a function that is defined using a function declaration

before the part of the code where you actually define it.
‣ Function expressions must be defined before they are called.

PARAMETERS
CONDITIONALS & FUNCTIONS 41

CONDITIONALS & FUNCTIONS 42

DOES THIS CODE SCALE?
function helloVal () {
 console.log('hello, Val');
}

function helloOtto () {
 console.log('hello, Otto')
}

function sayHello(name) {
 console.log('Hello ' + name);
}

sayHello('Val');
=> 'Hello Val'

sayHello('Otto');
=> 'Hello Otto’

CONDITIONALS & FUNCTIONS 43

USING A PARAMETER parameter

argument

CONDITIONALS & FUNCTIONS 44

USING MULTIPLE PARAMETERS

function sum(x, y, z) {
 console.log(x + y + z)
}

sum(1, 2, 3);
=> 6

multiple parameter names
separated by commas

CONDITIONALS & FUNCTIONS 45

USING DEFAULT PARAMETERS
function multiply(x, y = 2) {
 console.log(x * y)
}

multiply(5, 6);
=> 30 // result of 5 * 6 (both arguments)
multiply(4);
=> 8 // 4 (argument) * 2 (default value)

default value to set for parameter
if no argument is passed when
the function is called

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Given a function and a set of arguments, predict the output of a
function

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

3 min 1. Look at Part 2 A and B. Predict what will happen when
each function is called.

EXECUTION

‣ starter-code > 3-functions-exercise (part 2)
LOCATION

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

8 min 1. See if you can write one function that takes some
parameters and combines the functionality of the
makeAPizza and makeAVeggiePizza functions.

2. BONUS: Create your own function with parameters. This
function could do anything!

EXECUTION

‣ starter-code > 3-functions-exercise (part 3)
LOCATION

EXERCISE

EXERCISE — FUNCTIONS

‣ Describe how parameters and arguments relate to functions
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

1 min 1. Summarize why we would use functions in our programs.
What purpose do they serve?

2. What is a parameter? What is an argument? How are
parameters and arguments useful?

EXECUTION

THE return STATEMENT
CONDITIONALS & FUNCTIONS 49

CONDITIONALS & FUNCTIONS

return STATEMENT
50

‣ Ends function’s execution
‣ Returns a value — the result of running the function

CONDITIONALS & FUNCTIONS

return STOPS A FUNCTION’S EXECUTION
51

function speak(words) {
 return words;

 // The following statements will not run:
 let x = 1;
 let y = 2;
 console.log(x + y);
}

CONDITIONALS & FUNCTIONS

console.log() return

‣ Write a value at any point in a
program to the browser console

‣ Helpful for developer in debugging
‣ Not seen by user or used by app

console.log() vs return

‣ Sends a value back wherever the current
statement was triggered

‣ Can use a function to get a value and then
use that value elsewhere in your app

‣ Does not appear in the console unless
you’re executing commands there

vs

z = 7

CONDITIONALS & FUNCTIONS

return in action

function sum(x,y) {
 return x + y;
}

let z = sum(3,4);

call sum() function,
passing 3 and 4 as
arguments with x=3 and y=4,

return the result
of x + y, which is 7

CONDITIONALS & FUNCTIONS 54

Exit Tickets!
(Class #3)

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES - REVIEW
55

‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS 56

NEXT CLASS PREVIEW
Scope & Objects
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables
‣ Identify likely objects, properties, and methods in real-world scenarios
‣ Create JavaScript objects using object literal notation

Q&A
CONDITIONALS & FUNCTIONS 57

