JAVASCRIPT
DEVELOPMENT

CONDITIONALS & FUNCTIONS

HELLO!

1. Pull changes from the svodnik/JS-SF-10-resources repo to
your computer:

» Open the terminal
» cd to the Documents/JSD/JS-SF-10-resources directory

» Type git pull and press return

2. In your code editor, open the following folder:
Documents/JSD/JS-SF-10-resources/03—conditionals-

functions

CONDITIONALS & FUNCTIONS

WELCOME AURIELLE!

CONDITIONALS &
FUNCTIONS

CONDITIONALS & FUNCTIONS 9

LEARNING OBJECTIVES

At the end of this class, you will be able to
» Use Boolean logic to combine and manipulate conditional tests.

» Use if/else conditionals to control program flow.

» Differentiate among true, false, truthy, and falsy.

» Describe how parameters and arguments relate to functions

» Create and call a function that accepts parameters to solve a problem
» Define and call functions defined in terms of other functions

» Return a value from a function using the return keyword

» Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS

AGENDA

» Comparison operators
» Logical operators

» Conditional statements
» Functions

CONDITIONALS & FUNCTIONS

WEEKLY OVERVIEW

WEEK 2 Data Types & Loops / Conditionals & Functions

WEEK 3 (holiday) / Scope & Objects

WEEK 4 Slackbot Lab / JSON & DOM

CONDITIONALS & FUNCTIONS ;
EXIT TICKET QUESTIONS

I am a little confused about the functions within the iterating things.
Like the straight-up for loop makes a lot of sense to me, but the other
ones (forEach ete), I am confused when I need to use "return" and
exactly what they are doing.

2. let vs var, I know we might get to this but are both these things able to
be used by browsers? Do certain types of loops/functions warrant a var
vs a let?

3. Can arrays be type-sensitive with the data types they contain? In
today's example, we had instances of arrays containing both string and
number elements. Can you declare an empty array to be of a specific
type (.e: string only) so that there is an error if one were to append a
number to it?

4. What exercises can I do to ensure my confidence with forLoops?

CONDITIONALS & FUNCTIONS

How to you decide what to have for dinner?

» What factors do you consider?
» How do you decide between them?

CONDITIONALS

CONDITIONALS & FUNCTIONS 11

CONDITIONAL STATEMENTS

» Decide which blocks of code to execute and which to skip, based on the
results of tests that we run

» Known as control flow statements, because they let the program
make decisions about which statement should be executed next, rather
than just going in order

CONDITIONALS & FUNCTIONS 12

1t STATEMENT

if (expression) { if (expression) { code }
code

}

»JavaScript doesn’t care about white space, so these are equivalent.
» However, putting block contents on a separate line is best practice
for code readability.

CONDITIONALS & FUNCTIONS 13

BOOLEAN VALUES

» A separate data type
» Only valid values are true or false

» Named after George Boole, a mathematician

CONDITIONALS & FUNCTIONS

14

COMPARISON OPERATORS

@ ———

AN ANV V

greater than

greater than or equal to

less than

less than or equal to

strict equal (use this one)
coercive equal (AVOID)
strict not equal (use this one)

coercive not equal (AVOID)

CONDITIONALS & FUNCTIONS 15

TYPE COERCION

» JavaScript “feature” that attempts to make it possible to run a
comparison operation on two objects of different data types

» Results are sometimes unpredictable

» == and ! = use coercion if necessary to arrive at an answer — avoid
them

» === and ! == do not use coercion — best practice is to use these rather
than the coercive operators

CONDITIONALS & FUNCTIONS

16

1t STATEMENT

let weather = "sunny";
if (weather === "sunny") {

}

console.log("Grab your sunglasses");

CONDITIONALS & FUNCTIONS

17

if/else STATEMENT

var weather = "sunny";

if (weather === "sunny") {

console.log("Bring your sunglasses");
} else {

console.log("Grab a jacket");

}

CONDITIONALS & FUNCTIONS

else 1f STATEMENT

var weather = "sunny";

if (weather === "sunny") {

console.log("Bring your sunglasses");
} else if (weather === "rainy") {
console.log("Take an umbrella");
} else {

console.log("Grab a jacket");

}

CONDITIONALS & FUNCTIONS

19

TERNARY OPERATOR

» A compact if/else statement on a single line
» “ternary” means that it takes 3 operands

CONDITIONALS & FUNCTIONS

20

TERNARY OPERATOR

(expression) ? trueCode : falseCode;

CONDITIONALS & FUNCTIONS 21

TERNARY OPERATOR

» Can produce one of two values, which can be assigned to a variable in
the same statement

let name = (expression) ? trueCode : falseCode;

CONDITIONALS & FUNCTIONS

22

BLOCK STATEMENTS

» Statements to be executed after a control flow operation are grouped
into a block statement

» A block statement is placed inside braces

console.log("Grab your sunglasses.");

console.log("Enjoy the beach!");

CONDITIONALS & FUNCTIONS

23

LOGICAL OPERATORS

» Operators that let you chain conditional expressions

& & AND Returns true when both left and right values are true
|| OR Returns true when at least one of the left or right values is true

! NOT Takes a single value and returns the opposite Boolean value

CONDITIONALS & FUNCTIONS

TRUTHY AND FALSY VALUES

- E \" N
™. B

24

CONDITIONALS & FUNCTIONS 23

FALSY VALUES

» All of these values become false when converted to a Boolean:

false
)

€cH

NaN

null
undefined

» These are known as falsy values because they are equivalent to false

CONDITIONALS & FUNCTIONS

26

TRUTHY VALUES

» All values other than false, 0, "", NaN, null, and undefined become
true when converted to a Boolean

» All values besides these six are known as truthy values because they
are equivalent to true

» @° and ‘false’ are both truthy! (Why?)

CONDITIONALS & FUNCTIONS

27

BEST PRACTICES

» Convert to an actual Boolean value

» Adding ! before a value returns the inverse of the value as a
Boolean

» Adding ! ! before a value gives you the original value as a Boolean
» Check a value rather than a comparison

xinstead of
if (name === false)

just use
if (name)

LAB — CONDITIONALS

TYPE OF EXERCISE
» Pair

LOCATION
» starter-code > 1-ages-1lab

TIMING

15 min 1. Write a program that outputs results based on users’ age.
Use the list of conditions in the app. js file.

2. BONUS 1: Rewrite your code to allow a user to enter an
age value, rather than hard-coding it into your program.
(Hint: Read up on the window.prompt method.)

3. BONUS 3: Rewrite your code to use a switch statement
rather than if and else statements.

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

CONDITIONALS & FUNCTIONS

29

FUNCTIONS

CONDITIONALS & FUNCTIONS

FUNCTIONS

GROUP STEPS STORE STEPS
Allow us to group a We can use the same Not always executed
series of statements function multiple times when a page loads.
together to perform a Provide us with a way to
specific task 'store' the steps needed to

achieve a task.

CONDITIONALS & FUNCTIONS

DRY =
DON'T
REPEAT
YOURSELF

CONDITIONALS & FUNCTIONS

32

FUNCTION DECLARATION SYNTAX

function name(parameters) A
// do something

}

CONDITIONALS & FUNCTIONS

33

FUNCTION DECLARATION EXAMPLE

function speak() {
console.log(“Hello!”);

}

CONDITIONALS & FUNCTIONS

34

FUNCTION EXPRESSION SYNTAX

let name = function(parameters) {
// do something

}s

CONDITIONALS & FUNCTIONS

33

FUNCTION EXPRESSION EXAMPLE

let speak = function() {
console.log(“Hello!”);

s

CONDITIONALS & FUNCTIONS

36

ARROW FUNCTION SYNTAX

let name = (parameters) => {
// do something

}s

CONDITIONALS & FUNCTIONS

37

ARROW FUNCTION EXAMPLE

let speak = () => {
console.log(“Hello!”);

s

CONDITIONALS & FUNCTIONS

CALLING A FUNCTION
function pickADescriptiveName() {

¥

To run the function, we need to call it. We can do so like this:

pickADescriptiveName();

Function name + parentheses

EXERCISE — WRITING FUNCTIONS

KEY OBJECTIVE
» Practice defining and executing functions

TYPE OF EXERCISE
» Individual/paired

LOCATION
» starter-code > 3-functions-exercise (part1)

EXECUTION
4 min 1. Follow the instructions under Part 1

CONDITIONALS & FUNCTIONS 40

FUNCTION EXPRESSION VS FUNCTION DECLARATION

» Function expressions define functions that can be used anywhere in
the scope where they're defined.

» You can call a function that is defined using a function declaration
before the part of the code where you actually define it.

» Function expressions must be defined before they are called.

PARAMETERS

CONDITIONALS & FUNCTIONS

42

DOES THIS CODE SCALE?

function helloVal () {
console.log('hello, Val');

}

function helloOtto () {
console.log('hello, Otto')

}

CONDITIONALS & FUNCTIONS

43

USING A PARAMETER parameter

function sayHello(- {
console.log('Hello ' + name);

argument

¥

sayHello("');
=> 'Hello Val'

sayHello('Otto');
=> 'Hello Otto’

CONDITIONALS & FUNCTIONS

b

USING MULTIPLE PARAMETERS

multiple parameter names
separated by commas

function sum(XSEWERE)
console.log(x + y + z)

}

sum(1l, 2, 3);
=> 6

CONDITIONALS & FUNCTIONS 45

USI N G D EFAU I_T PARAM ETERS default value to set for parameter

if no argument is passed when
the function is called

function multiply(x, JlEE2) {
console.log(x * y)
}

multiply(5, 6);

=> 30 // result of 5 * 6 (both arguments)
multiply(4);

=> 8 // 4 (argument) * 2 (default value)

EXERCISE — READING FUNCTIONS

KEY 0BJECTIVE

» Given a function and a set of arguments, predict the output of a
function

TYPE OF EXERCISE
» Groups of2 -3

LOCATION
» starter-code > 3-functions-exercise (part 2)

EXECUTION

3 min 1. Look at Part 2 A and B. Predict what will happen when
each function is called.

EXERCISE — READING FUNCTIONS

KEY 0BJECTIVE

» Create and call a function that accepts parameters to solve a
problem

TYPE OF EXERCISE
» Groups of2 -3

LOCATION
» starter-code > 3-functions-exercise (part3)

EXECUTION

8§ min 1. See if you can write one function that takes some
parameters and combines the functionality of the
makeAPizza and makeAVeggiePizza functions.

2. BONUS: Create your own function with parameters. This
function could do anything!

EXERCISE — FUNCTIONS

KEY OBJECTIVE
» Describe how parameters and arguments relate to functions

TYPE OF EXERCISE
» Turn and Talk

EXECUTION

1 min 1. Summarize why we would use functions in our programs.
What purpose do they serve?

2. What is a parameter? What is an argument? How are
parameters and arguments useful?

CONDITIONALS & FUNCTIONS

THE return STATEMENT

CONDITIONALS & FUNCTIONS

return STATEMENT

» Ends function’s execution
» Returns a value — the result of running the function

CONDITIONALS & FUNCTIONS

return STOPS A FUNCTION'S EXECUTION

function speak(words) {
return words;

// The following statements will not run:
let x = 1;

let y = 2;

console.log(x + y);

CONDITIONALS & FUNCTIONS

console.log() vs return

console.log()

» Write a value at any point in a
program to the browser console

» Helpful for developer in debugging

» Not seen by user or used by app

VS

return

» Sends a value back wherever the current
statement was triggered

» Can use a function to get a value and then
use that value elsewhere in your app

» Does not appear in the console unless
you’re executing commands there

CONDITIONALS & FUNCTIONS

return in action

call sumO function,

assing 3 and 4 as
grgum%nts Wlth X=3 and y=4,

return the result
of X +y, whichis 7

CONDITIONALS & FUNCTIONS

94

Exit Tickets!

(Class #3)

CONDITIONALS & FUNCTIONS 93

LEARNING OBJECTIVES - REVIEW

» Use Boolean logic to combine and manipulate conditional tests.
» Use if/else conditionals to control program flow.

» Differentiate among true, false, truthy, and falsy.

» Describe how parameters and arguments relate to functions

» Create and call a function that accepts parameters to solve a problem
» Define and call functions defined in terms of other functions

» Return a value from a function using the return keyword

» Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS 26

NEXT CLASS PREVIEW
Scope & Objects

» Determine the scope of local and global variables

» Create a program that hoists variables

» Identify likely objects, properties, and methods in real-world scenarios
» Create JavaScript objects using object literal notation

CONDITIONALS & FUNCTIONS

97

0&A

