
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

ADVANCED JQUERY

HELLO!
2

1. Submit your homework and create a pull request
2. Pull changes from the svodnik/JS-SF-10-resources repo

to your computer

3. Open the 09-advanced-jquery > starter-code folder in
your code editor

JAVASCRIPT DEVELOPMENT

ADVANCED JQUERY

ADVANCED JQUERY

LEARNING OBJECTIVES
4

At the end of this class, you will be able to
‣ Use event delegation to manage dynamic content.
‣ Use implicit iteration to update elements of a jQuery selection
‣ Build content programmatically using template literals

ADVANCED JQUERY

AGENDA
5

‣ jQuery best practices
‣ Template literals

WEEK 8 Advanced APIs / Project 2 Lab

WEEKLY OVERVIEW
ADVANCED JQUERY

WEEK 7 Ajax & APIs / Asynchronous JavaScript & Callbacks

WEEK 6 (cancelled) / Advanced jQuery

ADVANCED JQUERY

EXIT TICKET QUESTIONS
7

1. Is there a list somewhere of default event behavior?
2. When is DOM manipulation utilized in the real world?
3. Is it possible to do vanilla js on a jquery obj?
4. Will there eventually be a simpler version of jQuery, as in turn it

appears a simpler version of JS? Who writes and maintains jQuery?
Whats the gap to go from animation which is ppt like to things used in
browsers?

ADVANCED JQUERY

HOMEWORK REVIEW

4 min 1. Share your solutions for the DOM homework.
2. Share a challenge you encountered, and how you

overcame it.
3. Share 1 thing you found challenging. If you worked it out,

share how; if not, brainstorm with your group how you
might approach it.

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Groups of 3
TYPE OF EXERCISE

BEST PRACTICES
ADVANCED JQUERY 10

METHOD CHAINING
ADVANCED JQUERY

ADVANCED JQUERY 12

CHAINING

let $mainCaption = $('<p>');
let $captionWithText = $mainCaption.html('Today');
let $fullCaption = $captionWithText.addClass('accent');

without chaining:

let $fullCaption = $('<p>').html('Today').addClass('accent');

with chaining:

LET'S TAKE A CLOSER LOOK

ADVANCED JQUERY

3 min 1. In your browser, open index.html and test the
functionality.

2. Open main.js in your editor and complete items 1 and 2.
3. In your browser, reload index.html and verify that the

functionality is unchanged.

EXERCISE

TIMING

EXERCISE - CHAINING

‣ starter-code > 1-best-practices-exercise
LOCATION

‣ Use chaining to place methods on selectors.
OBJECTIVE

IMPLICIT ITERATION
ADVANCED JQUERY

ADVANCED JQUERY 16

IMPLICIT ITERATION

$(‘li’).each(function() {
 $(this).removeClass(‘current’);
});

explicit iteration

.each() method
works like a
forEach loop

selects a
jQuery
collection

$(‘li’).removeClass(‘current’);

implicit iteration

applying any method to a
jQuery collection iterates
through each element

selects a
jQuery
collection

less code = best practice!not necessary for
element collections

LET'S TAKE A CLOSER LOOK

ADVANCED JQUERY

EXERCISE

EXERCISE - IMPLICIT ITERATION

‣ Use implicit iteration to update elements of a
jQuery selection.

OBJECTIVE

5 min 1. Return to main.js in your editor and complete item 3.
2. In your browser, reload index.html and verify that the

functionality is unchanged.

TIMING

‣ starter-code > 1-best-practices-exercise
LOCATION

EVENT DELEGATION
ADVANCED JQUERY

ADVANCED JQUERY 20

WITHOUT EVENT DELEGATION

•item1
•item2
•item3

1. load page 2. set event listener  
 on list items

•item1
•item2
•item3

$(‘li’).on(‘click’,function(){
 addClass(‘selected’)
});

click event
click event
click event

3. add a new list item

•item1
•item2
•item3
•item4

click event
click event
click event

click event is not automatically
applied to the new li element

add an event
listener to each li in

the DOM

ADVANCED JQUERY 21

WITH EVENT DELEGATION

•item1
•item2
•item3

1. load page 3. add a new list item

•item1
•item2
•item3
•item4

click event
click event
click event
click event

click event IS automatically
applied to the new li element!

2. set event listener  
 on parent of list items

•item1
•item2
•item3

$(‘ul’).on(‘click’, ‘li’, function(){
 addClass(‘selected’)
});

click event
click event
click event

new argument
‘li’ added to
on() method

selector
changed from
‘li’ to ‘ul’

add an event
listener to the ul

element that
applies to all of its

li descendants

LET'S TAKE A CLOSER LOOK

ADVANCED JQUERY

EXERCISE TIMING

EXERCISE - EVENT DELEGATION

LOCATION

‣ Use event delegation to manage dynamic content.
OBJECTIVE

‣ starter-code > 1-best-practices-exercise

10 min 1. Return to main.js in your editor and complete item 4.
2. In your browser, reload index.html and verify that when

you add a new item to the list, its “cross off” link works.
3. BONUS 1: When the user mouses over each item, the

item should turn grey. Don't use CSS hovering for this.
4. BONUS 2: Add another link, after each item, that allows

you to delete the item.

ATTACHING MULTIPLE EVENTS
WITH A SINGLE ON() STATEMENT

ADVANCED JQUERY

ADVANCED JQUERY 25

ATTACHING MULTIPLE EVENTS WITH A SINGLE .ON()
STATEMENT
‣ We could write a separate .on() statement for each event on an element:
 var $listElement = $(‘#contents-list');

 $listElement.on(‘mouseenter', ‘li’, function(event) {
 $(this).siblings().removeClass(‘active’);
 $(this).addClass('active');
 });

 $listElement.on('mouseleave', ‘li’, function(event) {
 $(this).removeClass('active');
 });

ADVANCED JQUERY 26

ATTACHING MULTIPLE EVENTS WITH A SINGLE .ON()
STATEMENT

 const $listElement = $(‘#contents-list');

 $listElement.on(‘mouseenter mouseleave', ‘li’, function(event) {
 if (event.type === ‘mouseenter’) {
 $(this).siblings().removeClass(‘active’);
 $(this).addClass(‘active');
 } else if (event.type === ‘mouseleave’) {
 $(this).removeClass(‘active');
 }
 });

LET'S TAKE A CLOSER LOOK

ADVANCED JQUERY

EXERCISE TIMING

EXERCISE - ATTACHING MULTIPLE EVENTS

LOCATION
‣ starter-code > 2-multiple-events-exercise

5 min 1. In your browser, open index.html. Move the mouse over
each list item and verify that the sibling items turn gray.

2. In your editor, open main.js and refactor the two event
listeners near the bottom of the file into a single event
listener for multiple events.

3. In your browser, reload index.html and verify that the
functionality is unchanged.

TEMPLATING
ADVANCED JQUERY 29

ADVANCED JQUERY 30

SEPARATION OF CONCERNS
‣ Programming principle of keeping different aspects (or concerns) of

an application separate
‣ Many ways to do this
‣ One common separation is between data (the information we’re

presenting) and view (the code that determines how data is presented)
‣ We should be able to change the code for one concern without affecting

the code for the other

ADVANCED JQUERY

CSS

JAVASCRIPT

HTML

BEHAVIOR

STYLESTRUCTURE

TRIPLE SCOOP: STYLE, STRUCTURE, BEHAVIOR

ADVANCED JQUERY

VIEWMODEL APPEARANCEDATA

MODEL VS VIEW

ADVANCED JQUERY 33

TEMPLATE LITERALS

conditionsPara.innerHTML = `${state.degCInt} C / ${state.degFInt} F`;

variable reference
surrounded by curly braces

variable reference starts
with a dollar sign

template literal starts and ends with a backtick

ADVANCED JQUERY 34

CREATING A TEMPLATE LITERAL
1. Create or reference an object/array/other variable that stores the

content
2. Create the template literal
3. Add the template literal to the DOM

LET'S TAKE A CLOSER LOOK

ADVANCED JQUERY

EXERCISE TIMING

EXERCISE - TEMPLATING

LOCATION
‣ starter-code > 5-templating-lab

10 min 1. Create a template literal and use it to display the data in
the favorite object.

2. Use the HTML structure shown in main.js.
3. BONUS: create a template literal that displays the

contents of the 'favorites' object at the bottom of main.js.

ADVANCED JQUERY 37

Exit Tickets!
(Class #9)

ADVANCED JQUERY

LEARNING OBJECTIVES - REVIEW
38

‣ Use event delegation to manage dynamic content.
‣ Use implicit iteration to update elements of a jQuery selection
‣ Build content programmatically using template literals

ADVANCED JQUERY 39

NEXT CLASS PREVIEW
Ajax & APIs
‣ Identify all the HTTP verbs & their uses.
‣ Describe APIs and how to make calls and consume API data.
‣ Access public APIs and get information back.
‣ Implement an Ajax request with Fetch.
‣ Create an Ajax request using jQuery.
‣ Reiterate the benefits of separation of concerns – API vs. Client.

Q&A
ADVANCED JQUERY 40

