
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

SLACK BOT LAB

HELLO!
2

1. Pull changes from the svodnik/JS-SF-8-resources repo
to your computer

2. Open the starter-code folder in your code editor

JAVASCRIPT DEVELOPMENT

SLACK BOT LAB

SLACK BOT LAB

LEARNING OBJECTIVES
4

At the end of this class, you will be able to
‣ Create a program that hoists variables
‣ Install and configure all utilities needed to run a Hubot
‣ Write scripts that allow your Hubot to interact with users of the class

Slack organization

SLACK BOT LAB

AGENDA
5

‣ Functions & hoisting
‣ Install and configure Slack bot utilities and accounts
‣ Explore sample code for bots
‣ Plan what you’d like your bot to do
‣ Create a basic bot to verify that your setup works
‣ Expand on your basic code to add your planned functionality

WEEKLY OVERVIEW
SLACK BOT LAB

WEEK 4

WEEK 5

Slackbot Lab / Objects & JSON

Intro to the DOM / Intro to jQuery

WEEK 6 Ajax & APIs / Asynchronous JavaScript & Callbacks

SLACK BOT LAB

EXIT TICKET QUESTIONS
7

1. I got the message “can’t automatically merge” on GitHub when I
tried to create a pull request

2. Browser versions - when to use Babel vs Modernizr
3. What is the functional difference between the 3 function declaration

styles? Why are there three?
4. Properties and Methods within Objects
5. How to do the bonus questions with DOM.
6. How do I submit homework?

LOOPS AND CONDITIONALS

SUBMIT HOMEWORK: STEP 1
8

In Finder:

‣ navigate to firstname-username folder (example: Sasha-svodnik)
‣ copy your completed Homework-2 folder from last Wednesday into

your firstname-username folder.

LOOPS AND CONDITIONALS

SUBMIT HOMEWORK: STEP 2
9

In Terminal:

‣ navigate to firstname-username folder
‣ git add .
‣ git commit -m “submitting homework 2”
‣ git push origin master

USING THE JS-SF-8-HOMEWORK REPO 10

Borgaard/
JS-SF-8-homework

<you>/
JS-SF-8—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-8-HOMEWORK REPO 11

Borgaard/
JS-SF-8-homework

<you>/
JS-SF-8—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-8-HOMEWORK REPO 12

Borgaard/
JS-SF-8-homework

<you>/
JS-SF-8—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

LOOPS AND CONDITIONALS

SUBMIT HOMEWORK: STEP 3
13

In Browser:

‣ Go to your fork of JS-SF-8-homework on github.com

‣ click New pull request
‣ click Create pull request
‣ click Create pull request (again)

http://github.com

USING THE JS-SF-8-HOMEWORK REPO 14

Borgaard/
JS-SF-8-homework

<you>/
JS-SF-8—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

SLACK BOT LAB

HOMEWORK REVIEW

6 min 1. Share 1 thing you’re excited about being able to
accomplish.

2. Have each person in the group note 1 thing they found
challenging for the exercises and make note. Discuss as a
group how you think you could solve that problem.

3. Did you complete either of the bonus exercises?
Demonstrate it and show your group how you did it!

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Groups of 3
TYPE OF EXERCISE

FUNCTIONS AND SCOPE

HOISTING
17

‣ JavaScript’s behavior of moving some declarations to the top of a
scope.

‣ This means that you are able to use some functions or variables before
they have been declared.

FUNCTIONS AND SCOPE

VARIABLES DECLARED WITH var ARE HOISTED
18

console.log("Hello!");
var x = "What’s up?";
console.log(x);

var x;
console.log("Hello!");
x = "What’s up?";
console.log(x);

parser hoists declaration of
x to the top of the scope

CODE AS WRITTEN CODE AS INTERPRETED BY PARSER

value is then assigned
to existing variable

FUNCTIONS AND SCOPE

VARIABLES DECLARED WITH let AND const ARE
NOT HOISTED

19

console.log("Hello!");
let x = "What’s up?";
console.log(x);

hoisting does not occur

CODE AS WRITTEN CODE AS INTERPRETED BY PARSER

console.log("Hello!");
let x = "What’s up?";
console.log(x);

FUNCTIONS AND SCOPE

DECLARING OUT OF ORDER
20

console.log(x);
> ReferenceError “x is not defined”
let x = "What’s up?";
console.log(x);
> “What’s up?”

let var

console.log(x);
> undefined
var x = "What’s up?";
console.log(x);
> “What’s up?”

parser does not know
that variable exists

parser knows that
variable exists, but
no value has been
assigned

FUNCTIONS AND SCOPE

FUNCTIONS AND HOISTING
21

foo();
bar();
baz();
var foo = function () {

console.log("this won't run!");
}
let bar = function() {

console.log("this won’t run!");
}
function baz() {

console.log("this will run!");
}

CODE AS WRITTEN
var foo;
function baz() {

console.log("this will run!");
}
foo();
bar();
baz();
foo = function () {

console.log("this won't run!");
}
let bar = function() {

console.log("this won’t run!");
}

CODE AS INTERPRETED BY PARSER

FUNCTIONS AND SCOPE

FUNCTIONS AND HOISTING - RESULTS
22

foo();
> TypeError "foo is not a function"
bar();
> ReferenceError “bar is not defined”
baz();
> "this will run!”
var foo = function () {

console.log("this won't run!");
}
let bar = function() {

console.log("this won’t run!");
}
function baz() {

console.log("this will run!");
}

variable name declared with var is
hoisted
variable name declared with let is
not hoisted

function declaration name and
value are hoisted

FUNCTIONS AND SCOPE 23

HOISTING SUMMARY
statement type name hoisted? value hoisted?

function declaration

expression using let

expression using var

LET'S TAKE A CLOSER LOOK

FUNCTIONS AND SCOPE

HOISTING BEST PRACTICES
25

‣ Don’t rely on hoisting!
‣ Declare all variables at the top

of the scope
‣ Declare all functions at the top

of the scope

let x = "this won’t run";
let y = "this will run";
var foo = function () {

console.log(y);
}
let bar = function() {

console.log(y);
}
function baz() {

console.log(y);
}
foo();
bar();
baz();

EXERCISE

EXERCISE — HOISTING

‣ Create a program that hoists variables
KEY OBJECTIVE

‣ Groups of 3
TYPE OF EXERCISE

2 min 1. Examine the code on the whiteboard.
2. Discuss with your group which parts of the code are

hoisted.
3. Predict the result of each of the first four statements.

EXECUTION

SLACK BOTS
SLACK BOT LAB 27

SLACK BOT LAB

SLACK AND BOTS
28

‣ Bot: A script programmed to interact with users as if
it’s a person
‣ Slackbot
‣ PlusPlus

‣ We will use a framework to create our own bots with
interactive behaviors that we specify with our code

‣ These bots will be members of our class Slack
organization

SLACK BOT LAB

HUBOT
29

‣ Hubot: A framework meant to speed the process
of developing bots for a variety of platforms,
including Slack

‣ Includes built-in functionality for performing
common bot tasks, such as posting images.

‣ We will use the Hubot framework to create our
bots

SLACK BOT LAB

HUBOT vs SLACK BOT vs SLACKBOT
30

‣ Hubot is the framework we’re using
‣ Each of us will be building a bot for Slack === a Slack bot
‣ Slackbot is the name of a specific bot already installed in our Slack

organization; it answers questions about how to use Slack

SLACK BOT LAB

HEROKU
31

‣ Heroku: A platform for hosting and running apps in the
cloud.

‣ We will create our code on our computers, then push it
to Heroku so it can run even when our computers are
sleeping or shut down

SLACK BOT LAB 32

Hubot>

Heroku

Slack
JS-SF-8

git
API key

Interacting with your bot at the command line
involves local files on your computer only.

Interacting with your bot on the class
Slack organization involves the files you
published to your Heroku instance.

SLACK BOT LAB

YEOMAN
33

‣ Yeoman: A set of tools that provides a scaffolding
(basic structure) for getting web apps up and
running quickly

‣ We’ll use a Yeoman tool called yo, which
automates a lot of behind-the-scenes work

SLACK BOT LAB

COFFEESCRIPT
34

‣ CoffeeScript: A variant of JavaScript, intended to be
more readable and faster to type.

‣ Only JavaScript can run in browsers
‣ Before being used, CoffeeScript code must be

compiled, which is a process that translates it into
JavaScript

‣ Many Hubot examples are written in CoffeeScript, but
you can write Hubot code in vanilla JavaScript without
any problem

SLACK BOT LAB

MARKDOWN
35

‣Markdown: A markup language used for creating
formatted text documents.

‣ Easier to use than HTML for basic tasks
‣ Comes in different flavors; GitHub has its own
‣ Used to create README files that document projects

in GitHub repos
‣ You will use Markdown to create a README file

explaining what your bot does and how to use it

ACTIVITY — HUBOT CONFIGURATION

‣ Install and configure all utilities to run a Hubot
KEY OBJECTIVE

20 min
EXECUTION

‣ JS-SF-8-resources > 1-slack-bot-install-guide.md
LOCATION

1. Follow the instructions to install command line utilities for
building Hubots.

2. When you finish, start reading and exploring the sample code
in 2-slack-bot-code-samples.md

ACTIVITY

SLACK BOT LAB

UNDERSTANDING THE HUBOT FRAMEWORK
37

‣ As a framework, Hubot has its own way of doing things
‣ The code for your bot behaviors is structured as follows:

module.exports = function(robot) { 
 robot.verb(parameter1, function(res) {
 return res.command();
 });
};

SLACK BOT LAB

BASIC HUBOT VERBS
38

‣ hear: called anytime a message’s text matches
‣ respond: called for messages immediately preceded by the robot’s

name or alias

LET'S TAKE A CLOSER LOOK

SLACK BOT LAB 40

Heroku:
Jason

@bluebot
Slack

JS-SF-8
Heroku:
Aygyun

@bluebot hi!

hi! hi!

Howdy! Good evening!

Howdy!
Good evening!

Because you’re sharing your bot
on Slack, you may get multiple
responses to the same interaction.

Just verify that one of them is what
you expect.

LAB — BUILD A SLACK BOT

‣ Write scripts that allow your Hubot to interact with users of the
class Slack organization

KEY OBJECTIVE

Until 9:20
EXECUTION

‣ [hubot folder] > scripts > slackbot.js
LOCATION

1. Uncommenting portions of the sample code in slackbot.js to
explore how to code in the Hubot framework, and what a bot
can do in Slack.

2. Try out some of the code samples in the 2-slack-bot-code-
samples.md file.

3. Create a plan for what you want your bot to be able to do,
pseudocode it, and start building it!

4. BONUS: Experiment with advanced commands documented at
https://github.com/github/hubot/blob/master/docs/scripting.md

https://github.com/github/hubot/blob/master/docs/scripting.md

SLACK BOT LAB

LEARNING OBJECTIVES - REVIEW
42

‣ Create a program that hoists variables
‣ Install and configure all utilities needed to run a Hubot
‣ Write scripts that allow your Hubot to interact with users of the class

Slack organization

SLACK BOT LAB 43

NEXT CLASS PREVIEW
Objects and JSON
‣ Identify likely objects, attributes, and methods in real-world scenarios
‣ Create JavaScript objects using object literal notation
‣ Implement and interface with JSON data

SLACK BOT LAB 44

Exit Tickets!

Q&A
SLACK BOT LAB 45

