
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

HELLO!
2

1. Submit homework and create a pull request
2. Pull changes from the svodnik/JS-SF-8-resources repo

to your computer

3. Open the starter-code folder in your code editor

JAVASCRIPT DEVELOPMENT

ASYNCHRONOUS
JAVASCRIPT AND
CALLBACKS

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

LEARNING OBJECTIVES
4

At the end of this class, you will be able to
‣ Implement a jQuery Ajax client for a simple REST service.
‣ Pass functions as arguments to functions that expect them.
‣ Write functions that take other functions as arguments.
‣ Build asynchronous program flow using promises and Fetch

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

AGENDA
5

‣ Implement a jQuery Ajax client for a simple REST service.
‣ Functions as callbacks
‣ Promises & Fetch

WEEKLY OVERVIEW
ASYNCHRONOUS JAVASCRIPT & CALLBACKS

WEEK 8 Project 2 Lab / Context and this

WEEK 7 Asynchronous JavaScript & Callbacks / Advanced APIs

WEEK 9 CRUD & Firebase / Deploying your app

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

HOMEWORK REVIEW

4 min 1. Share your solutions for the homework.
2. Share a challenge you encountered, and how you

overcame it.
3. Share 1 thing you found challenging. If you worked it out,

share how; if not, brainstorm with your group how you
might approach it.

4. Share the APIs you plan to use for the Feedr project, and
what you’ve learned about them from their
documentation.

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Groups of 3
TYPE OF EXERCISE

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

EXIT TICKET QUESTIONS
9

1. > Headers? I've read a lot about headers, but don't know exactly how
to use...for example in CORS, putting the content-type on a request,
etc 
> More examples of HTTP Request format?

2. I'm just not sure I understand how APIs and AJAX and REST are all
connected. I feel confident writing the code, but don't really know how
to explain what it's doing. A lot of this still feels pretty nebulous.

3. Do you link all of your JS files to your main.js if you want to keep
them separate?

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

EXIT TICKET QUESTIONS
10

4. How to find interesting APIs and how to navigate them and find the
right information. How to get better at following
the .next().next().next() workflow (vs. line-by-line code)

5. The data we got back from our fetch requests came in different
formats. One was an array and one was a javascript object. Why do
we get different data types? Is that just how that API stores data?

jQuery Ajax
AJAX & APIS 11

AJAX & APIS 12

Using Ajax with jQuery

method description

$.get() loads data from a server using an HTTP GET request

$.ajax() performs an Ajax request based on parameters you specify

LET'S TAKE A CLOSER LOOK

LAB — JQUERY AJAX

10 min
EXECUTION

LOCATION

1. Read the documentation at zippopotam.us. Note that
zippopotam.us does not require an API key.

2. Create an ajax request using the jQuery get() method. Log the
response to the console.

3. Write code to identify that city and state values in the response
and the update your code to log only those values to the
console.

4. Bonus items are detailed in the script.js file.

‣ starter-code > 1-jquery-ajax-exercise

‣ Implement a jQuery Ajax client for a simple REST service.
OBJECTIVES

EXERCISE

ACTIVITY

‣ Turn & Talk
TYPE OF EXERCISE

2 min
TIMING

1. For the code on the board, identify the number of
arguments.

2. Find a partner or two, share your answers, and discuss.

HOW MANY ARGUMENTS IN THIS CODE?

button.addEventListener('click', function() {
 // your code here
}, false);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

Functions and
callbacks

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 17

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 18

SYNCHRONOUS PROGRAMMING

doSomething();
doAnotherThing();
doSomethingElse();

run each function, one after the otherfunction doSomething() {
 // do something
}
function doAnotherThing() {
 // do another thing
}
function doSomethingElse() {
 // do one more thing
}

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 19

ASYNCHRONOUS PROGRAMMING

$(‘button’).on(‘click’, doSomething);
function doSomething() {
 // do something
}
function doAnotherThing() {
 // do another thing
}
function doSomethingElse() {
 // do one more thing
}

$.get(url, function(data) {
 doAnotherThing(data);
});
fetch(url).then(function(response) {
 if (response.ok) {
 return response.json();
 } else {
 console.log('There was a problem.');
 }
}).then(doSomethingElse(data));

run each function, but only after something has happened

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 20

FUNCTIONS ARE FIRST-CLASS OBJECTS

‣ Functions can be used in any part of the code that strings, arrays, or
data of any other type can be used

➡store functions as variables
➡pass functions as arguments to other functions
➡return functions from other functions
➡run functions without otherwise assigning them

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 21

HIGHER-ORDER FUNCTION

‣ A function that takes another function as an argument, or that returns
a function

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 22

HIGHER-ORDER FUNCTION — EXAMPLE

setTimeout(function, delay);

setTimeout()

where
•function is a function (reference or anonymous)
•delay is a time in milliseconds to wait before the first argument is called

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 23

SETTIMEOUT WITH ANONYMOUS FUNCTION ARGUMENT

setTimeout(function(){
 console.log("Hello world");
}, 1000);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 24

SETTIMEOUT WITH NAMED FUNCTION ARGUMENT

function helloWorld() {
 console.log("Hello world");
}

setTimeout(helloWorld, 1000);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 25

CALLBACK

‣ A function that is passed to another function as an argument, and that
is then called from within the other function

‣ A callback function can be anonymous (as with setTimeout() or
forEach()) or it can be a reference to a function defined elsewhere

LET'S TAKE A CLOSER LOOK

EXERCISE

TIMING

EXERCISE - CREATING A CALLBACK FUNCTION, PART 1

LOCATION
‣ starter-code > 3-callback-exercise

10 min 1. In your editor, open script.js.
2. Follow the instructions in Part 1 to create the add,

process, and subtract functions, and to call the process
function using the add and subtraction functions as
callbacks.

3. Test your work in the browser and verify that you get the
expected results.

4. BONUS: Comment out your work and recreate using
arrow functions (see https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Functions/
Arrow_functions)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

EXERCISE

TIMING

EXERCISE - CREATING A CALLBACK FUNCTION, PART 2

LOCATION
‣ starter-code > 3-callback-exercise

10 min 1. In your editor, return to script.js.
2. Follow the instructions in Part 2 to allow the process

function to accept values as additional parameters, and to
pass those values when calling the callback function.

3. Test your work in the browser and verify that you get the
expected results.

4. BONUS: Make the same changes to your code that uses
arrow functions.

Promises & Fetch
ASYNCHRONOUS JAVASCRIPT & CALLBACKS 29

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 30

PROMISES

doSomething(successCallback, failureCallback);

doSomething().then(successCallback, failureCallback);

traditional callback:

callback using a promise:

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 31

MULTIPLE CALLBACKS — TRADITIONAL CODE

doSomething(function(result) {
 doSomethingElse(result, function(newResult) {
 doThirdThing(newResult, function(finalResult) {
 console.log('Got the final result: ' + finalResult);
 }, failureCallback);
 }, failureCallback);
}, failureCallback);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 32

MULTIPLE CALLBACKS WITH PROMISES
doSomething().then(function(result) {
 return doSomethingElse(result);
})
.then(function(newResult) {
 return doThirdThing(newResult);
})
.then(function(finalResult) {
 console.log('Got the final result: ' + finalResult);
})
.catch(failureCallback);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 33

ERROR HANDLING WITH PROMISES
doSomething().then(function(result) {
 return doSomethingElse(result);
})
.then(function(newResult) {
 return doThirdThing(newResult);
})
.then(function(finalResult) {
 console.log('Got the final result: ' + finalResult);
})
.catch(failureCallback);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 34

PROMISES

function
1

on completion,
generates

promise
(object)

promise
passed

to .then() function
2

function 1
success

function 1
failure

promise
passed

to .catch()

on completion,
generates

promise
(object)

function 2
success

function 2
failure

promise
passed

to .catch()

error
handling
function

promise
passed

to .then()

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 35

FETCH
fetch(url).then(function(response) {
 if(response.ok) {
 return response.json();
 }
 throw new Error('Network response was not ok.');
}).then(function(data) {
 // DOM manipulation
}).catch(function(data) {
 // handle lack of data in UI
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 36

FETCH VS JQUERY $.GET()
fetch(url).then(function(res) {
 if(response.ok) {
 return res.json();
 }
 throw new Error(‘problem');
}).then(function(data) {
 // DOM manipulation
}).catch(function(data) {
 // handle lack of data in UI
});

$.get(url).done(function(data) {
 // work with data
}).done(function(data) {
 // DOM manipulation
})
.fail(function(data) {
 // handle lack of data in UI
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 37

ERROR HANDLING FOR INITIAL FETCH REQUEST
fetch(url).then(function(response) {
 if(response.ok) {
 return response.json();
 }
 throw new Error('Network response was not ok.');
}).then(function(data) {
 // DOM manipulation
}).catch(function(data) {
 // handle lack of data in UI
});

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 38

Exit Tickets!
(Class #11)

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

LEARNING OBJECTIVES - REVIEW
39

‣ Implement a jQuery Ajax client for a simple REST service.
‣ Pass functions as arguments to functions that expect them.
‣ Write functions that take other functions as arguments.
‣ Build asynchronous program flow using promises and Fetch

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 40

NEXT CLASS PREVIEW
Advanced APIs
‣ Generate API specific events and request data from a web service.
‣ Implement a geolocation API to request a location.
‣ Process a third-party API response and share location data on your

website.
‣ Make a request and ask another program or script to do something.
‣ Search documentation needed to make and customize third-party API

requests.

Q&A
ASYNCHRONOUS JAVASCRIPT & CALLBACKS 41

