
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CLOSURES & THE MODULE PATTERN

HELLO!
2

1. Pull changes from the svodnik/JS-SF-8-resources repo
to your computer

2. Open the starter-code folder in your code editor

JAVASCRIPT DEVELOPMENT

CLOSURES &
THE MODULE PATTERN

CLOSURES & THE MODULE PATTERN

LEARNING OBJECTIVES
4

At the end of this class, you will be able to
‣ Describe the difference between functional programming and object

oriented programming.
‣ Understand and explain closures.
‣ Instantly invoke functions.
‣ Implement the module pattern in your code.

CLOSURES & THE MODULE PATTERN

AGENDA
5

‣ Constructor functions
‣ Closures
‣ The module pattern

WEEKLY OVERVIEW
CLOSURES & THE MODULE PATTERN

WEEK 8 Project 2 Lab / Closures & the module pattern

WEEK 9 CRUD & Firebase / Deploying your app

WEEK 10 Instructor/Student Choice / Final project lab

CLOSURES & THE MODULE PATTERN 7

1. What is the callback.html from the previous class
(HW6) doing?

2. How come we don't need to start a local HTTP server
for Project 2? When do we need to do that versus not?

3. What are best practices? Seems we've learned a lot of
ways to do a lot of things, but I don't know if template
literals are better than creating elements the long
way, or what the trade-offs are. (Same for jQuery vs.
Vanilla, etc.)

Exit Ticket Questions

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

FUNCTIONS & OBJECTS
CLOSURES & THE MODULE PATTERN 9

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

2 min 1. On your desk, on paper, or in your editor, write code that
uses an object literal to create an object named
tortoise.

2. Give your object a property named mph with a value of 1,
and a property named description with a value of “slow
and steady”.

EXERCISE

TIMING

EXERCISE — CREATE AN OBJECT LITERAL

‣ Individual
TYPE OF EXERCISE

CLOSURES & THE MODULE PATTERN 12

const taxRate = 0.0875;
let items = [];

function addToCart() {
 // do something
}

function calcTax() {
 // do something
}

function calcTotal() {
 // do something
}

functional code

let cart = {
 taxRate: 0.0875,
 items: [],
 addToCart: function() {
 // do something
 },
 calcTax: function() {
 // do something
 },
 calcTotal: function() {
 // do something
 }
};

object oriented code

LET'S TAKE A CLOSER LOOK

8 min 1. In app.js, Define a function called makeCar() that takes
two parameters (model, color), makes a new object literal
for a car using those params, and returns that object.

2. Be sure your function returns the fuel property and the
drive and refuel methods that you worked with in the
previous exercise.

EXERCISE
TIMING

EXERCISE — CREATE A MAKECAR FUNCTION

‣ start files > 1-make-car-function
LOCATION

‣ Individual/pair
TYPE OF EXERCISE

CLOSURES
CLOSURES & THE MODULE PATTERN 15

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THE MODULE PATTERN

SCOPE
17

‣ Describes the set of variables you have access to

let temp = 75;
function predict() {
 console.log(temp); // 75
}
console.log(temp); // 75

CLOSURES & THE MODULE PATTERN

GLOBAL SCOPE
18

‣ A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

a variable declared outside of the function is in the global scope

let temp = 75;
function predict() {
 let forecast = ‘Sun’;
 console.log(temp + " and " + forecast); // 75 and Sun
}
console.log(temp + " and " + forecast);
// ‘forecast’ is undefined

CLOSURES & THE MODULE PATTERN

LOCAL SCOPE
19

‣ A variable declared within a function is not accessible outside of that
function. Such a variable is said to have local scope.

a variable declared
within a function is
in the local scope of
that function

a local variable is
not accessible
outside of its local
scope

let temp = 75;
if (temp > 70) {
 let forecast = ‘It’s gonna be warm!’;
 console.log(temp + “! ” + forecast); // 75! It’s gonna be warm!
}
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

CLOSURES & THE MODULE PATTERN

BLOCK SCOPE
20

‣ A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

‣ This is known as block scope.

a variable with block
scope is not accessible
outside of its block

let creates a local
variable within any block,
such as an if statement

CLOSURES & THE MODULE PATTERN

BUILDING BLOCKS OF CLOSURES
21

‣nested functions
‣scope

» inner function has access to outer function’s
variables

‣return statements

» outer function returns reference to inner function

function getTemp() {
 let temp = 75;
 let tempAccess = function() {
 console.log(temp);
 }
 return tempAccess;
}

CLOSURES & THE MODULE PATTERN

CLOSURES
22

‣ A closure is an inner function that has access to the outer (enclosing)
function’s variables.

the tempAccess()
function is a
closure

outer function
getTemp() returns
a reference to the
inner function
tempAccess()

CLOSURES & THE MODULE PATTERN

CLOSURES
23

‣A closure is an inner function that has access to the
outer (enclosing) function’s variables.
‣You create a closure by nesting a function inside
another function.

‣A closure is also known as lexical scope

LET'S TAKE A CLOSER LOOK

CLOSURES & THE MODULE PATTERN

CLOSURES — KEY POINTS
25

‣Closures have access to the outer function’s variables
(including parameters) even after the outer function
returns.

‣Closures store references to the outer function’s
variables, not the actual values.

LET'S TAKE A CLOSER LOOK

CLOSURES & THE MODULE PATTERN

WHAT ARE CLOSURES USED FOR?
27

‣Turning an outer variable into a private variable
‣Namespacing private functions

LAB — CLOSURES

‣ Understand and explain closures
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

15 min
EXECUTION

‣ starter-code > 3-closures-lab
LOCATION

1. Follow the instructions in app.js to build and test code that uses
a closure.

Immediately-invoked
function expressions

CLOSURES & THE MODULE PATTERN 29

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THE MODULE PATTERN 31

Immediately-invoked function expression (IIFE)

‣ A function expression that is executed as soon as it is declared
‣ Pronounced “iffy”

CLOSURES & THE MODULE PATTERN 32

IIFE based on a function expression

var countDown = function() {
 var counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
}();

‣ Make a function expression into an IIFE by adding () to the end (before
the semicolon)

CLOSURES & THE MODULE PATTERN 33

IIFE based on a function expression

var countDown = function() {
 var counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
}();

‣ Make a function expression into an IIFE by adding () to the end (before
the semicolon)

CLOSURES & THE MODULE PATTERN 34

IIFE based on a function declaration

(function countDown() {
 var counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
})();

‣ Make a function declaration into an IIFE by adding  
(at the start and  
)(); to the end

CLOSURES & THE MODULE PATTERN 35

IIFE based on a function declaration

(function countDown() {
 var counter;
 for(counter = 3; counter > 0; counter--) {
 console.log(counter);
 }
})();

‣ Make a function declaration into an IIFE by adding  
(at the start and  
)(); to the end

LET'S TAKE A CLOSER LOOK

THE MODULE PATTERN
CLOSURES & THE MODULE PATTERN 37

PUTTING IT ALL TOGETHER!
CLOSURES & THE MODULE PATTERN

CLOSURES
OBJECT-

ORIENTED
CODE

IIFES

CLOSURES & THE MODULE PATTERN

THE MODULE PATTERN
39

‣Using an IIFE to return an object literal
‣The methods of the returned object can access the
private properties and methods of the IIFE (closures!),
but other code cannot do this
‣This means specific parts of the IIFE are not available
in the global scope

let counter = (function() {
 let count = 0;

 return {
 reset: function() {
 count = 0;
 },
 get: function() {
 return count;
 },
 increment: function() {
 count++;
 }
 };
})();

CLOSURES & THE MODULE PATTERN

BUILDING A MODULE
40

from an IIFE

containing a closure
returning an
object literal

CLOSURES & THE MODULE PATTERN

BENEFITS OF THE MODULE PATTERN
41

‣Keeps some functions and variables private
‣Avoids polluting the global scope
‣Organizes code into objects

LET'S TAKE A CLOSER LOOK

until 9:20 1. In app.js, complete the module so it exports methods for
the behaviors described in the comment at the top of the
file.

2. When your code is complete and works properly, the
statements at the bottom of the file should all return the
expected values in the console.

3. BONUS: Add a "tradeIn" method that lets you change the
make of the car and refuels it. Be sure the getMake
method still works after doing a tradeIn.

EXERCISE

TIMING

EXERCISE — CREATE A MODULE

‣ Pair
TYPE OF EXERCISE

‣ start files > 6-modules-exercise
LOCATION

CLOSURES & THE MODULE PATTERN 44

Exit Tickets!
(Class #14)

CLOSURES & THE MODULE PATTERN

LEARNING OBJECTIVES - REVIEW
45

‣ Describe the difference between functional programming and object
oriented programming.

‣ Understand and explain closures.
‣ Instantly invoke functions.
‣ Implement the module pattern in your code.

CLOSURES & THE MODULE PATTERN 46

NEXT CLASS PREVIEW
In-class lab: Intro to CRUD and Firebase
‣ Explain what CRUD is. (Preview: Create, Read, Update, Delete)
‣ Explain the HTTP methods associated with CRUD.
‣ Implement Firebase in an application.
‣ Build a full-stack app.

Q&A
CLOSURES & THE MODULE PATTERN 47

