
SLACK BOTS & SCOPE

TO TEST YOUR BOT LOCALLY
1. At the command line, navigate to the main folder for your bot.
2. Type ./bin/hubot and press Enter. This gives a few warning messages that

you can safely ignore, as long as the BASH prompt is not displayed again after
them.

3. Press Enter, after which you should see a prompt such as hubot> that lets you
interact with your bot.

4. When you’re done testing, press control + C to return to the BASH prompt.

TO TEST YOUR BOT ON SLACK
1. At the command line, navigate to the main folder for your bot.
2. Push your code to Heroku using the following commands: 
git add . 
git commit -m “description of changes” 
git push heroku master

3. Open a direct message with the bot you're sharing in the class Slack
organization (such as redbot or greenbot).

4. Send a direct message to interact with your bot. 
Remember that the bot’s replies may reflect the code of the classmate sharing
your bot on Slack, as well as your own code, so you may get multiple replies to a
single test message.

function predict() {
 let forecast = 'Sun';
 console.log(temp + ' and ' + forecast);
 // 75 and Sun
}

a variable declared outside of a function is in the global scope

a variable
declared within a
function is in the
local scope of that
function

if (temp > 70) {
 let forecast = 'It’s gonna be warm!';
 console.log(temp + '! ' + forecast);
 // 75! It’s gonna be warm!
}

a variable
declared with let
and within a block,
such as an if
statement, is in
the block scope of
that statement

GLOBAL, LOCAL, & BLOCK SCOPE

let temp = 75;

keyword local scope mutable browsers
var function only yes all
let any block yes modern

const any block no modern

type name hoisted content hoisted
declaration yes yes

let expression no no
var expression yes no

VAR, LET, & CONST

FUNCTIONS & HOISTING

