
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

CONDITIONALS & FUNCTIONS

HELLO!
2

1. Pull changes from the svodnik/JS-SF-8-resources repo
to your computer:
‣ Open the terminal
‣ cd to the JSD/JS-SF-8-resources directory
‣ Type git pull and press return

2. In your code editor, open the following folder:  
JSD/JS-SF-8-resources/03-loops—conditionals/
starter-code

JAVASCRIPT DEVELOPMENT

CONDITIONALS &
FUNCTIONS

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES
4

At the end of this class, you will be able to
‣ Build iterative loops using for and forEach statements.
‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS

AGENDA
5

‣ for loops
‣ Comparison operators, logical operators, & conditional statements
‣ Functions

WEEKLY OVERVIEW
CONDITIONALS & FUNCTIONS

WEEK 3

WEEK 4

Scope & Objects / (holiday)

Slackbot Lab / JSON & Object Oriented Programming

WEEK 2 Data Types & Loops / Conditionals & Functions

CONDITIONALS & FUNCTIONS 7

EXIT TICKET QUESTIONS
1. I'm not sure how to apply what I'm learning on solving problems
2. Having trouble remembering all the methods
3. We can add elements to an array to the beginning and the end and

rearrange the elements in reverse, but can you add an element to a
particular spot in the array?

4. How Array is used in the real world
5. Does having strings and numbers in the same array make using the

array more complicated?

CONDITIONALS & FUNCTIONS 8

How to you decide what to have for dinner?

‣ What factors do you consider?
‣ How do you decide between them?

LOOPS
CONDITIONALS & FUNCTIONS 9

CONDITIONALS & FUNCTIONS 10

ITERATING
Going through the same process with a bunch of items,
one at a time

parameter serves as a
variable referencing the
current array element

teams.forEach(function(element) {
 console.log(element);
});

CONDITIONALS & FUNCTIONS 11

method name
function to execute for
each array elementarray name

single JavaScript statement, so
it ends with a semicolon

forEach()

CONDITIONALS & FUNCTIONS 12

forEach() EXAMPLE

let teams = ['Bruins', 'Bears', 'Ravens', 'Ducks'];

teams.forEach(function(element) {
 console.log(element);
});

10 min 1. In the app.js file, complete Questions 5-6.

2. BONUS: Complete Question 7.

EXERCISE TIMING

LAB — ARRAYS

‣ Individual / Pair
TYPE OF EXERCISE

‣ starter-code > 0-arrays-loops-exercise
LOCATION

for (let i = 0; i < teams.length; i++) {
 console.log(teams[i]);
}

for STATEMENT execute commands if
this statement is truestarting condition

increment the i variable at the
end of each time through the loop

for keyword

statement(s) to execute
enclosed in braces

one or more statements to execute
are contained within the braces

CONDITIONALS & FUNCTIONS 14

CONDITIONALS & FUNCTIONS 15

for STATEMENT
let fruits = ['apples', 'oranges', 'bananas'];

for (let i = 0; i < fruits.length; i++) {
 console.log(fruits[i]);
});

< "apples"
< "oranges"
< "bananas"

result in console:

10 min 1. Write code that creates a for loop that calculates 2 to a
given power, and console.logs each step of the
calculation. (Full instructions in the app.js file.)

2. BONUS 1: Rewrite your code to allow a user to enter the
exponent value, rather than hard-coding it into your
program. (Hint: Read up on the window.prompt method.)

3. BONUS 2: Rewrite your code to use a while loop rather
than a for loop.

4. BONUS 3: Rewrite your code to use a do/while loop
rather than a for loop or while loop.

EXERCISE TIMING

LAB — FOR LOOPS

‣ Individual / Pair
TYPE OF EXERCISE

‣ starter-code > 2-loops-exercise
LOCATION

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/while
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/do...while

CONDITIONALS
CONDITIONALS & FUNCTIONS 17

CONDITIONALS & FUNCTIONS 18

CONDITIONAL STATEMENTS
‣ Decide which blocks of code to execute and which to skip, based on the

results of tests that we run
‣ Known as control flow statements, because they let the program

make decisions about which statement should be executed next, rather
than just going in order

if STATEMENT
CONDITIONALS & FUNCTIONS 19

if (expression) { code } if (expression) { 
 code 
}

‣JavaScript doesn’t care about white space, so these are equivalent.
‣However, putting block contents on a separate line is best practice
for code readability.

CONDITIONALS & FUNCTIONS 20

BOOLEAN VALUES
‣ A separate data type
‣ Only valid values are true or false
‣ Named after George Boole, a mathematician

true false

CONDITIONALS & FUNCTIONS 21

COMPARISON OPERATORS
> greater than

>= greater than or equal to

< less than

<= less than or equal to

=== strict equal (use this one)

== coercive equal (AVOID)

!== strict not equal (use this one)

!= coercive not equal (AVOID)

CONDITIONALS & FUNCTIONS 22

TYPE COERCION

‣ JavaScript “feature” that attempts to make it possible to run a
comparison operation on two objects of different data types

‣ Results are sometimes unpredictable
‣ == and != use coercion if necessary to arrive at an answer — avoid

them
‣ === and !== do not use coercion — best practice is to use these rather

than the coercive operators

CONDITIONALS & FUNCTIONS 23

if STATEMENT

let weather = "sunny";

if (weather === "sunny") {
 console.log("Grab your sunglasses");
}

CONDITIONALS & FUNCTIONS 24

if/else STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 25

else if STATEMENT
var weather = "sunny";

if (weather === "sunny") {
 console.log("Bring your sunglasses");
} else if (weather === "rainy") {
 console.log("Take an umbrella");
} else {
 console.log("Grab a jacket");
}

CONDITIONALS & FUNCTIONS 26

TERNARY OPERATOR

‣ A compact if/else statement on a single line
‣ “ternary” means that it takes 3 operands

CONDITIONALS & FUNCTIONS 27

TERNARY OPERATOR

(expression) ? trueCode : falseCode;

CONDITIONALS & FUNCTIONS 28

TERNARY OPERATOR

let name = (expression) ? trueCode : falseCode;

‣ Can produce one of two values, which can be assigned to a variable in
the same statement

CONDITIONALS & FUNCTIONS 29

BLOCK STATEMENTS
‣ Statements to be executed after a control flow operation are grouped

into a block statement
‣ A block statement is placed inside braces

{
 console.log("Grab your sunglasses.");
 console.log("Enjoy the beach!");
}

CONDITIONALS & FUNCTIONS 30

LOGICAL OPERATORS
‣ Operators that let you chain conditional expressions

&& AND Returns true when both left and right values are true

|| OR Returns true when at least one of the left or right values is true

! NOT Takes a single value and returns the opposite Boolean value

CONDITIONALS & FUNCTIONS 31

TRUTHY AND FALSY VALUES

CONDITIONALS & FUNCTIONS 32

FALSY VALUES
‣ All of these values become false when converted to a Boolean:

‣ false
‣ 0
‣ “”
‣ NaN
‣ null
‣ undefined

‣ These are known as falsy values because they are equivalent to false

CONDITIONALS & FUNCTIONS 33

TRUTHY VALUES
‣ All values other than false, 0, "", NaN, null, and undefined become
true when converted to a Boolean

‣ All values besides these six are known as truthy values because they
are equivalent to true

‣ ‘0’ and ‘false’ are both truthy! (Why?)

CONDITIONALS & FUNCTIONS 34

BEST PRACTICES
‣ Convert to an actual Boolean value

‣ Adding ! before a value returns the inverse of the value as a
Boolean

‣ Adding !! before a value gives you the original value as a Boolean
‣ Check a value rather than a comparison

instead of  
if (name === false)

just use  
if (name)

15 min 1. Write a program that outputs results based on users’ age.
Use the list of conditions in the app.js file.

2. BONUS 1: Rewrite your code to allow a user to enter an
age value, rather than hard-coding it into your program.
(Hint: Read up on the window.prompt method.)

3. BONUS 3: Rewrite your code to use a switch statement
rather than if and else statements.

EXERCISE TIMING

LAB — CONDITIONALS

‣ Pair
TYPE OF EXERCISE

‣ starter-code > 4-ages-lab
LOCATION

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

FUNCTIONS
SCOPE & OBJECTS 36

SCOPE & OBJECTS

Allow us to group a
series of statements

together to perform a
specific task

We can use the same
function multiple times

Not always executed
when a page loads.

Provide us with a way to
'store' the steps needed to

achieve a task.

GROUP STEPS REUSABLE STORE STEPS

FUNCTIONS

SCOPE & OBJECTS 38

DRY =
DON’T
REPEAT
YOURSELF

SCOPE & OBJECTS 39

FUNCTION DECLARATION SYNTAX

function name(parameters) {
 // do something
}

SCOPE & OBJECTS 40

FUNCTION DECLARATION EXAMPLE

function speak() {
 console.log(“Hello!”);
}

SCOPE & OBJECTS 41

FUNCTION EXPRESSION SYNTAX

let name = function(parameters) {
 // do something
};

SCOPE & OBJECTS 42

FUNCTION EXPRESSION EXAMPLE

let speak = function() {
 console.log(“Hello!”);
};

SCOPE & OBJECTS 43

ARROW FUNCTION SYNTAX

let name = (parameters) => {
 // do something
};

SCOPE & OBJECTS 44

ARROW FUNCTION EXAMPLE

let speak = () => {
 console.log(“Hello!”);
};

SCOPE & OBJECTS

pickADescriptiveName();
Function name + parentheses

function pickADescriptiveName() {
 // do something
}

To run the function, we need to call it. We can do so like this:

CALLING A FUNCTION

EXERCISE

EXERCISE — WRITING FUNCTIONS

‣ Practice defining and executing functions
KEY OBJECTIVE

‣ Individual/paired
TYPE OF EXERCISE

4 min 1. Follow the instructions under Part 1
EXECUTION

‣ starter-code > 0-functions-exercise (part 1)
LOCATION

SCOPE & OBJECTS 47

FUNCTION EXPRESSION VS FUNCTION DECLARATION
‣ Function expressions define functions that can be used anywhere in

the scope where they're defined.
‣ You can call a function that is defined using a function declaration

before the part of the code where you actually define it.
‣ Function expressions must be defined before they are called.

PARAMETERS
SCOPE & OBJECTS 48

SCOPE & OBJECTS 49

DOES THIS CODE SCALE?
function helloVal () {
 console.log('hello, Val');
}

function helloOtto () {
 console.log('hello, Otto')
}

function sayHello(name) {
 console.log('Hello ' + name);
}

sayHello('Val');
=> 'Hello Val'

sayHello('Otto');
=> 'Hello Otto’

SCOPE & OBJECTS 50

USING A PARAMETER parameter

argument

SCOPE & OBJECTS 51

USING MULTIPLE PARAMETERS

function sum(x, y, z) {
 console.log(x + y + z)
}

sum(1, 2, 3);
=> 6

multiple parameter names
separated by commas

SCOPE & OBJECTS 52

USING DEFAULT PARAMETERS
function multiply(x, y = 2) {
 console.log(x * y)
}

multiply(5, 6);
=> 30 // result of 5 * 6 (both arguments)
multiply(4);
=> 8 // 4 (argument) * 2 (default value)

default value to set for parameter
if no argument is passed when
the function is called

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Given a function and a set of arguments, predict the output of a
function

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

3 min 1. Look at Part 2 A and B. Predict what will happen when
each function is called.

EXECUTION

‣ starter-code > 5-functions-exercise (part 2)
LOCATION

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

8 min 1. See if you can write one function that takes some
parameters and combines the functionality of the
makeAPizza and makeAVeggiePizza functions.

2. BONUS: Create your own function with parameters. This
function could do anything!

EXECUTION

‣ starter-code > 5-functions-exercise (part 3)
LOCATION

EXERCISE

EXERCISE — FUNCTIONS

‣ Describe how parameters and arguments relate to functions
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

1 min 1. Summarize why we would use functions in our programs.
What purpose do they serve?

2. What is a parameter? What is an argument? How are
parameters and arguments useful?

EXECUTION

THE return STATEMENT
SCOPE & OBJECTS 56

SCOPE & OBJECTS

return STATEMENT
57

‣ Ends function’s execution
‣ Returns a value — the result of running the function

SCOPE & OBJECTS

return STOPS A FUNCTION’S EXECUTION
58

function speak(words) {
 return words;

 // The following statements will not run:
 let x = 1;
 let y = 2;
 console.log(x + y);
}

SCOPE & OBJECTS

console.log()
return

‣ Write a value at any point in a
program to the browser console

‣ Helpful for developer in debugging
‣ Not seen by user or used by app

console.log() vs return

‣ Sends a value back wherever the current
statement was triggered

‣ Can use a function to get a value and then
use that value elsewhere in your app

‣ Does not appear in the console unless
you’re executing commands there

vs

z = 7

SCOPE & OBJECTS

return in action

function sum(x,y) {
 return x + y;
}

let z = sum(3,4);

call sum() function,
passing 3 and 4 as
arguments with x=3 and y=4,

return the result
of x + y, which is 7

CONDITIONALS & FUNCTIONS 61

Exit Tickets!
(Class #3)

CONDITIONALS & FUNCTIONS

LEARNING OBJECTIVES - REVIEW
62

‣ Build iterative loops using for and forEach statements.
‣ Use Boolean logic to combine and manipulate conditional tests.
‣ Use if/else conditionals to control program flow.
‣ Differentiate among true, false, truthy, and falsy.
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values

CONDITIONALS & FUNCTIONS 63

NEXT CLASS PREVIEW
Scope & Objects
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables
‣ Identify likely objects, properties, and methods in real-world scenarios
‣ Create JavaScript objects using object literal notation

Q&A
CONDITIONALS & FUNCTIONS 64

