
Sasha Vodnik, Instructor

JAVASCRIPT
DEVELOPMENT

FUNCTIONS & SCOPE

HELLO!
2

1. Pull changes from the svodnik/JS-SF-9-resources repo to
your computer:
‣ Open the terminal
‣ cd to the ~/Documents/JSD/JS-SF-9-resources directory
‣ Type git pull and press return

2. In your code editor, open the following folder:  
JS-SF-9-resources/04-functions-scope/starter-code

JAVASCRIPT DEVELOPMENT

FUNCTIONS & SCOPE

FUNCTIONS & SCOPE

LEARNING OBJECTIVES
4

At the end of this class, you will be able to
‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables

FUNCTIONS & SCOPE

AGENDA
5

‣ Functions
‣ Variable scope
‣ The var, let, and const keywords
‣ Hoisting

WEEKLY OVERVIEW
FUNCTIONS & SCOPE

WEEK 3

WEEK 4

Functions & scope / (holiday)

Slackbot Lab / Objects & JSON

WEEK 5 Intro to the DOM / Intro to jQuery

FUNCTIONS & SCOPE

Where we are
7

Class 00 1901 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

joggingstanding walking

FUNCTIONS & SCOPE

HOMEWORK REVIEW

10 min 1. Take turns showing and explaining your code.
2. Share 1 thing you’re excited about being able to

accomplish.
3. Have each person in the group note 1 thing they found

challenging for the homework. Discuss as a group how
you think you could solve each problem.

4. Did you work on the Random Address Generator bonus
exercise? Show your group what you did!

EXERCISE

TIMING

HOMEWORK — GROUP DISCUSSION

‣ Groups of 3
TYPE OF EXERCISE

USING THE JS-SF-9-HOMEWORK REPO 10

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

FUNCTIONS & SCOPE

SUBMIT HOMEWORK: SETUP (ONE TIME ONLY)
11

On github.com:

‣ Open https://github.com/svodnik/JS-SF-9-homework
‣ Fork this repo to your GitHub account
‣ Clone your fork to your computer, within your JSD folder

https://github.com/svodnik/JS-SF-9-homework

USING THE JS-SF-9-HOMEWORK REPO 12

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-9-HOMEWORK REPO 13

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

FUNCTIONS & SCOPE

HOMEWORK FOLDER LOCATION
14

JSD

JS-SF-9-homework

JS-SF-9-resources

username.github.io

new folder for
your clone of the
homework repo

FUNCTIONS & SCOPE

SUBMIT HOMEWORK: SETUP (CONTINUED)
15

‣ Within your new JS-SF-9-homework folder, create a new subfolder
and name it your first name, a hyphen, and your github name. For
instance, Sasha’s folder would be Sasha-svodnik.

FUNCTIONS & SCOPE

PERSONAL ASSIGNMENTS FOLDER LOCATION
16

JSD

JS-SF-9-homework

JS-SF-9-resources

username.github.io

new folder for
your completed
assignments

firstname-github account

FUNCTIONS & SCOPE

SETUP DONE!
17

‣ Reminder: Now that you’ve completed the preceding setup, you
never have to do it again!

‣ Each time you submit homework for the rest of this course, you’ll
repeat only the steps that follow.

FUNCTIONS & SCOPE

SUBMIT HOMEWORK: STEP 1
18

In Finder:

‣ navigate to firstname-username folder (example: Sasha-svodnik)
‣ copy your completed Homework-1 folder from last Thursday into

your firstname-username folder.

FUNCTIONS & SCOPE

SUBMIT HOMEWORK: STEP 1 ILLUSTRATION
19

JS-SF-9-resources JS-SF-9-homework

02-data-types-loops

03-conditionals-functions

start-files

Homework-1

firstname-github account

Homework-1

copy

FUNCTIONS & SCOPE

SUBMIT HOMEWORK: STEP 2
20

In Terminal:

‣ navigate to firstname-username folder
‣ git add .
‣ git commit -m “submitting Homework 1”
‣ git push origin master

USING THE JS-SF-9-HOMEWORK REPO 21

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-9-HOMEWORK REPO 22

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

USING THE JS-SF-9-HOMEWORK REPO 23

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

FUNCTIONS & SCOPE

SUBMIT HOMEWORK: STEP 3
24

In Browser:

‣ Go to your fork of JS-SF-9-homework on github.com

‣ click New pull request
‣ click Create pull request
‣ click Create pull request (again)

https://github.com

USING THE JS-SF-9-HOMEWORK REPO 25

svodnik/
JS-SF-9-homework

<you>/
JS-SF-9—homework

Remote Remote fork (copy)
Fork

(copied just once)

Pull request
(request that I
pull your code)

Remote/web

Local/your computer Clone
(copied
just once)

git add fruits.js

fruits.js

specify file or entire folder

“add fruit”

git commit -m “add fruit”

describe what you are doing

ship box to
origin link

add fruit to
fruit repo at
me/JSD-homework

git push origin master

default
branch

your GitHub repo URL

Push
(each set of
changes)

FUNCTIONS & SCOPE 26

Why do we use different networks to connect to the
Internet when we’re in different places?
‣home
‣GA
‣in a car
‣on BART/MUNI

FUNCTIONS
FUNCTIONS & SCOPE 27

FUNCTIONS & SCOPE

Allow us to group a
series of statements

together to perform a
specific task

We can use the same
function multiple times

Not always executed
when a page loads.

Provide us with a way to
'store' the steps needed to

achieve a task.

GROUP STEPS REUSABLE STORE STEPS

FUNCTIONS

FUNCTIONS & SCOPE 29

DRY =
DON’T
REPEAT
YOURSELF

FUNCTIONS & SCOPE 30

FUNCTION DECLARATION SYNTAX

function name(parameters) {
 // do something
}

FUNCTIONS & SCOPE 31

FUNCTION DECLARATION EXAMPLE

function speak() {
 console.log(“Hello!”);
}

FUNCTIONS & SCOPE 32

FUNCTION EXPRESSION SYNTAX

let name = function(parameters) {
 // do something
};

FUNCTIONS & SCOPE 33

FUNCTION EXPRESSION EXAMPLE

let speak = function() {
 console.log(“Hello!”);
};

FUNCTIONS & SCOPE 34

ARROW FUNCTION SYNTAX

let name = (parameters) => {
 // do something
};

FUNCTIONS & SCOPE 35

ARROW FUNCTION EXAMPLE

let speak = () => {
 console.log(“Hello!”);
};

FUNCTIONS & SCOPE

pickADescriptiveName();
Function name + parentheses

function pickADescriptiveName() {
 // do something
}

To run the function, we need to call it. We can do so like this:

CALLING A FUNCTION

EXERCISE

EXERCISE — WRITING FUNCTIONS

‣ Practice defining and executing functions
KEY OBJECTIVE

‣ Individual/paired
TYPE OF EXERCISE

4 min 1. Follow the instructions under Part 1
EXECUTION

‣ starter-code > 0-functions-exercise (part 1)
LOCATION

FUNCTIONS & SCOPE 38

FUNCTION EXPRESSION VS FUNCTION DECLARATION
‣ Function expressions define functions that can be used anywhere in

the scope where they're defined.
‣ You can call a function that is defined using a function declaration

before the part of the code where you actually define it.
‣ Function expressions must be defined before they are called.

PARAMETERS
FUNCTIONS & SCOPE 39

FUNCTIONS & SCOPE 40

DOES THIS CODE SCALE?
function helloVal () {
 console.log('hello, Val');
}

function helloOtto () {
 console.log('hello, Otto')
}

function sayHello(name) {
 console.log('Hello ' + name);
}

sayHello('Val');
=> 'Hello Val'

sayHello('Otto');
=> 'Hello Otto’

FUNCTIONS & SCOPE 41

USING A PARAMETER parameter

argument

FUNCTIONS & SCOPE 42

USING MULTIPLE PARAMETERS

function sum(x, y, z) {
 console.log(x + y + z)
}

sum(1, 2, 3);
=> 6

multiple parameter names
separated by commas

FUNCTIONS & SCOPE 43

USING DEFAULT PARAMETERS
function multiply(x, y = 2) {
 console.log(x * y)
}

multiply(5, 6);
=> 30 // result of 5 * 6 (both arguments)
multiply(4);
=> 8 // 4 (argument) * 2 (default value)

default value to set for parameter
if no argument is passed when
the function is called

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Given a function and a set of arguments, predict the output of a
function

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

3 min 1. Look at Part 2 A and B. Predict what will happen when
each function is called.

EXECUTION

‣ starter-code > 0-functions-exercise (part 2)
LOCATION

EXERCISE

EXERCISE — READING FUNCTIONS

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Groups of 2 - 3
TYPE OF EXERCISE

8 min 1. See if you can write one function that takes some
parameters and combines the functionality of the
makeAPizza and makeAVeggiePizza functions.

2. BONUS: Create your own function with parameters. This
function could do anything!

EXECUTION

‣ starter-code > 0-functions-exercise (part 3)
LOCATION

EXERCISE

EXERCISE — FUNCTIONS

‣ Describe how parameters and arguments relate to functions
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

1 min 1. Summarize why we would use functions in our programs.
What purpose do they serve?

2. What is a parameter? What is an argument? How are
parameters and arguments useful?

EXECUTION

THE return STATEMENT
FUNCTIONS & SCOPE 47

FUNCTIONS & SCOPE

return STATEMENT
48

‣ Ends function’s execution
‣ Returns a value — the result of running the function

FUNCTIONS & SCOPE

return STOPS A FUNCTION’S EXECUTION
49

function speak(words) {
 return words;

 // The following statements will not run:
 let x = 1;
 let y = 2;
 console.log(x + y);
}

FUNCTIONS & SCOPE

console.log()
return

‣ Write a value at any point in a
program to the browser console

‣ Helpful for developer in debugging
‣ Not seen by user or used by app

console.log() vs return

‣ Sends a value back wherever the current
statement was triggered

‣ Can use a function to get a value and then
use that value elsewhere in your app

‣ Does not appear in the console unless
you’re executing commands there

vs

z = 7

FUNCTIONS & SCOPE

return in action

function sum(x,y) {
 return x + y;
}

let z = sum(3,4);

call sum() function,
passing 3 and 4 as
arguments with x=3 and y=4,

return the result
of x + y, which is 7

EXERCISE

EXERCISE — FUNCTIONS AND PARAMETERS

‣ Create and call a function that accepts parameters to solve a
problem

KEY OBJECTIVE

‣ Individual or pairs
TYPE OF EXERCISE

10 min 1. Write code to to calculate a customer's total cost in
dollars based on product price, tax rate, shipping cost,
and the currency they're using for the purchase (dollars
or euros)

2. BONUS: Convert your function to assume a currency of
"dollar" by default.

EXECUTION

‣ starter-code > 1-functions-lab
LOCATION

SCOPE
FUNCTIONS & SCOPE 53

FUNCTIONS & SCOPE

SCOPE
54

‣ Describes the set of variables you have access to

let temp = 75;
function predict() {
 console.log(temp); // 75
}
console.log(temp); // 75

FUNCTIONS & SCOPE

GLOBAL SCOPE
55

‣ A variable declared outside of a function is accessible everywhere,
even within functions. Such a variable is said to have global scope.

a variable declared outside of the function is in the global scope

let temp = 75;
function predict() {
 let forecast = ‘Sun’;
 console.log(temp + " and " + forecast); // 75 and Sun
}
console.log(temp + " and " + forecast);
// ‘forecast’ is undefined

FUNCTIONS & SCOPE

LOCAL SCOPE
56

‣ A variable declared within a function is not accessible outside of that
function. Such a variable is said to have local scope.

a variable declared
within a function is
in the local scope of
that function

a local variable is
not accessible
outside of its local
scope

let temp = 75;
if (temp > 70) {
 let forecast = ‘It’s gonna be warm!’;
 console.log(temp + “! ” + forecast); // 75! It’s gonna be warm!
}
console.log(temp + “! " + forecast); // ‘forecast’ is undefined

FUNCTIONS & SCOPE

BLOCK SCOPE
57

‣ A variable created with let or const creates local scope within any
block, including blocks that are part of loops and conditionals.

‣ This is known as block scope.

a variable with block
scope is not accessible
outside of its block

let creates a local
variable within any block,
such as an if statement

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — SCOPE

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Turn and Talk
TYPE OF EXERCISE

3 min 1. Describe the difference between global and local scope
2. Collaborate to write code that includes at least one

variable with local scope and one variable with global
scope

EXECUTION

LAB — SCOPE

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

5 min
EXECUTION

‣ starter code > 3-scope-lab
LOCATION

1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > main.js to complete parts A
and B.

FUNCTIONS & SCOPE

var, let, const, AND SCOPE
61

‣ var obeys the scoping rules we’ve just seen
» “generic” way to create variables

‣ let and const are newer keywords with different scoping rules
» local scope within functions and within any block (including loops

and conditionals)

FUNCTIONS & SCOPE

var
62

‣ creates local scope only within functions

let results = [0,5,2];

FUNCTIONS & SCOPE

let
63

‣ used in the same situations as var, but with different scoping rules for
code blocks

let results = [0,5,2];

FUNCTIONS & SCOPE

const
64

‣ used to declare constants
» immutable: once you’ve declared a value using const, you can’t

change the value in that scope
» by contrast, variables declared with var or let are mutable,

meaning their values can be changed
‣ some developers use all capital letters for constant names, but this is

not required

const SALESTAX = 0.0875;

let x = 1;
if (true) {
 let x = 2;
 console.log(x); // 2
}
console.log(x); // 1

FUNCTIONS & SCOPE

let/const vs var
65

var x = 1;
if (true) {
 var x = 2;
 console.log(x); // 2
}
console.log(x); // 2

‣ let & const create local scope within any block
(including loops and conditionals) but var does not

global scope global scope

treated as
local scope by
let statement

FUNCTIONS & SCOPE 66

‣ let and const are not supported by older browsers

» see caniuse.com, search on let
‣ babel.js (babeljs.io) allows you to transpile newer code into code that

works with older browsers as well
‣ we will rely on const and let in class

var, let, const, AND BROWSER SUPPORT

http://caniuse.com
http://babeljs.io

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — VAR, LET, AND CONST

‣ Distinguish between var, let, and const
KEY OBJECTIVE

‣ Individual or pairs
TYPE OF EXERCISE

2 min
EXECUTION

1. Draw the table shown on the whiteboard, which compares a
few aspects of var, let, and const usage.

2. Complete the table.

FUNCTIONS & SCOPE 69

var, let, AND const
keyword local scope

can you change
the value in the
current scope?

browser support

var
within the code
block of a function
only

yes all browsers

let within any code
block yes only modern

browsers

const within any code
block no only modern

browsers

LAB — LET, VAR, AND CONST

‣ Determine the scope of local and global variables
KEY OBJECTIVE

‣ Pairs
TYPE OF EXERCISE

5 min
EXECUTION

‣ starter code > 4-let-var-const-lab
LOCATION

1. Open the index.html file in your browser, view the console, and
examine the error.

2. Follow the instructions in js > app.js to complete parts A
and B.

FUNCTIONS & SCOPE

HOISTING
71

‣ JavaScript’s behavior of moving declarations to the top of a scope.
‣ This means that you are able to use a function or a variable before it

has been declared.
‣ Variables declared with var are hoisted
‣ Variables declared with let and const are not hoisted

FUNCTIONS & SCOPE

FUNCTIONS AND HOISTING
72

‣ Function expressions are treated like other variables
‣ when declared with var, only the name is hoisted, not the value
‣ when declared with let, they are not hoisted

‣ Function declarations are treated differently
‣ the code for the entire function is hoisted along with a function

declaration

FUNCTIONS & SCOPE 73

FUNCTIONS AND HOISTING
function type function name hoisted? function content

hoisted?

function declaration yes yes

function expression
using let

no no

function expression
using var yes no

LET'S TAKE A CLOSER LOOK

EXERCISE

EXERCISE — HOISTING

‣ Create a program that hoists variables
KEY OBJECTIVE

‣ Groups of 3
TYPE OF EXERCISE

2 min 1. Examine the code on the whiteboard.
2. Discuss with your group which parts of the code are

hoisted.
3. Predict the result of each of the first four statements.

EXECUTION

FUNCTIONS & SCOPE 76

Exit Tickets!
(Class #4)

FUNCTIONS & SCOPE

LEARNING OBJECTIVES - REVIEW
77

‣ Describe how parameters and arguments relate to functions
‣ Create and call a function that accepts parameters to solve a problem
‣ Define and call functions defined in terms of other functions
‣ Return a value from a function using the return keyword
‣ Define and call functions with argument-dependent return values
‣ Determine the scope of local and global variables
‣ Create a program that hoists variables

FUNCTIONS & SCOPE 78

NEXT CLASS PREVIEW
Hubot Lab
‣ Install and configure all utilities needed to run a Hubot
‣ Write scripts that allow your Hubot to interact with users of the class

Slack organization

Q&A
FUNCTIONS & SCOPE 79

