JAVASCRIPT
DEVELOPMENT

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

HELLO!

1. Remove your API keys from your homework, then submit it
and create a pull request

2. Pull changes from the svodnik/JS-SF-9-resources repo
to your computer

3. Openthe 11-async—callbacks > starter—-code folderin
your code editor

ASYNCHRONOUS
JAVASCRIPT &
CALLBACKS

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

LEARNING OBJECTIVES

At the end of this class, you will be able to

» Pass functions as arguments to functions that expect them.
» Write functions that take other functions as arguments.

» Build asynchronous program flow using promises and Fetch

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

AGENDA

» Functions as callbacks
» Promises & Fetch

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

WEEKLY OVERVIEW

WEEK 7 Asynchronous JavaScript & Callbacks / Advanced APIs

HOLIDAY WEEK — NO CLASS!

WEEK 8 Project 2 Lab / Closures & the module pattern

WEEK 9 CRUD & Firebase / Deploying your app

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

HOMEWORK REVIEW

HOMEWORK — GROUP DISCUSSION

TYPE OF EXERCISE

» Groups of 3

TIMING

6 min

. Share your solutions for the homework.
. Share a challenge you encountered, and how you

overcame it.

. Share 1 thing you found challenging. If you worked it out,

share how; if not, brainstorm with your group how you
might approach it.

. Share the APIs you plan to use for the Feedr project, and

what you’ve learned about them from their
documentation.

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

EXIT TICKET QUESTIONS

1. How much freedom do we have to modify design of api data?
2. Are there compliers to convert JQuery to Javascript?

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

HOW MANY ARGUMENTS IN THIS CODE?

button.addEventListener('click', function() {

}, false):

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

11

Functions and
callbacks

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

12

SYNCHRONOUS PROGRAMMING

run each function, one after the other

function doSomething() { doSomething();

doAnotherThing();

+ doSomethingElse();
function doAnotherThing() {

}
function doSomethingElse() A{

L

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 13

ASYNCHRONOUS PROGRAMMING

function doSomething() <

}
function doAnotherThing() A

}
function doSomethingElse() A

h

run each function, but only after something has happened

$(‘button’).on(‘click’, doSomething);

$.get(url, function(data) {
doAnotherThing(data);

})s

fetch(url).then(function(response) {
if (response.ok) {
return response.json();
} else {
console.log(

}
}).then(doSomethingElse(data));

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

14

FUNCTIONS ARE FIRST-CLASS OBJECTS

» Functions can be used in any part of the code that strings, arrays, or
data of any other type can be used

=store functions as variables

=pass functions as arguments to other functions
=return functions from other functions

=run functions without otherwise assigning them

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 15

HIGHER-ORDER FUNCTION

» A function that takes another function as an argument, or that returns
a function

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 16

HIGHER-ORDER FUNCTION — EXAMPLE

setTimeout ()

setTimeout (function, delay);

where
. function is a function (reference or anonymous)

. delay is a time in milliseconds to wait before the first argument is called

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 17

SETTIMEOUT WITH ANONYMOUS FUNCTION ARGUMENT

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

18

SETTIMEOUT WITH NAMED FUNCTION ARGUMENT

function helloWorld() {
console. log("Hello world");
¥

setTimeout (ICICHEORNE, 1000);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 19

CALLBACK

» A function that is passed to another function as an argument, and that
is then called from within the other function

» A callback function can be anonymous (as with setTimeout() or
forEach()) orit can be a reference to a function defined elsewhere

LET'S TAKE A CLOSER LOOK

EXERCISE - CREATING A CALLBACK FUNCTION, PART 1

LOCATION

» starter-code > 3-callback-exercise

TIMING

10 min

. In your editor, open script.js.
. Follow the instructions in Part 1 to create the add,

process, and subtract functions, and to call the process
function using the add and subtraction functions as
callbacks.

. Test your work in the browser and verify that you get the

expected results.

. BONUS: Comment out your work and recreate using

arrow functions (see https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Functions/
Arrow_functions)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

EXERCISE - CREATING A CALLBACK FUNCTION, PART 2

LOCATION

» starter-code > 3-callback-exercise

TIMING

10 min

. In your editor, return to script.js.
. Follow the instructions in Part 2 to allow the process

function to accept values as additional parameters, and to
pass those values when calling the callback function.

. Test your work in the browser and verify that you get the

expected results.

. BONUS: Make the same changes to your code that uses

arrow functions.

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

23

Promises & Fetch

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

24

PROMISES

traditional callback:

doSomething(successCallback, failureCallback);

callback using a promise:

doSomething().then(
// work with result

).catch(
// handle error

);

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

23

MULTIPLE CALLBACKS — TRADITIONAL CODE

doSomething(function(result
doSomethingElse(result, function(newResult
doThirdThing(newResult, function(finalResult
console.log(' 'Got the final result: ' + finalResult
failureCallback
failureCallback
failureCallback

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

26

MULTIPLE CALLBACKS WITH PROMISES

doSomething().then(function(result
return doSomethingElse(result

then(function(newResult
return doThirdThing(newResult

then(function(finalResult
console.log('Got the final result: ' + finalResult

catch(function(error
console.log(‘There was an error’

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

27

ERROR HANDLING WITH PROMISES

doSomething().then(function(result
return doSomethingElse(result

then(function(newResult
return doThirdThing(newResult

then(function(finalResult
console.log('Got the final result:

catch(function(error
console.log(‘There was an error’

+ finalResult

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 28

PRﬂMISES function 1 function 2

SUCCEeSS SUCCEeSS
on completion, %Zg'esg on completion, T)ra?srg:c?
generates : to .then() generates : to .then()
> promise > promise >
function 1 function 2
failure arror failure
promise > handl_ing < promise
passed function passed
to .catch() to .catch()

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

29

FETCH

fetch(url).then(function(response) {
if(response.ok) {

return response.json();
} else {

throw 'Network response was not ok.’;

}
}).then(function(data) {

}).catch(function(error) {

})s

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 30

Fetch jQuery .get()
fetch then(function(res $.get .done(function(data) {
if(res.ok
return res.json
else

throw ‘problem’

then(function

catch(function fail (function

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

31

ERROR HANDLING FOR INITIAL FETCH REQUEST

fetch then(function(response
if(response.ok
return response.json

throw 'Network response was not ok.'
then(function

catch(function

LET'S TAKE A CLOSER LOOK

EXERCISE - FETCH

LOCATION
» starter-code > 3-async-exercise

TIMING
until 9:20 1. In your editor, open script.js.

2. Follow the instructions to add a Fetch request for
weather data that uses the results of the existing zip code
lookup.

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

34

Exit Tickets!

(Class #11)

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

33

LEARNING OBJECTIVES - REVIEW

» Pass functions as arguments to functions that expect them.
» Write functions that take other functions as arguments.
» Build asynchronous program flow using promises and Fetch

ASYNCHRONOUS JAVASCRIPT & CALLBACKS 36

NEXT CLASS PREVIEW
Advanced APIs

» Generate API specific events and request data from a web service.
» Implement a geolocation API to request a location.

» Process a third-party API response and share location data on your
website.

» Make a request and ask another program or script to do something.

» Search documentation needed to make and customize third-party API
requests.

ASYNCHRONOUS JAVASCRIPT & CALLBACKS

37

0&A

